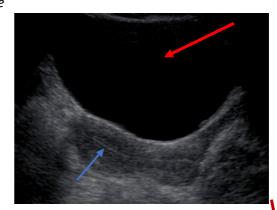
PI Session: 2021.11.19_D and T_Radiology: Imaging of Reproductive system 2_ Preparatory_Marcus John Julius, M.D.

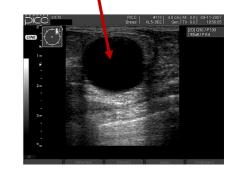
Objectives: At the end of this session, students will be able to:

- 1. Incorporate correct imaging terminology in the description of ultrasound images (including simple cysts).
- 2. Utilize sonography (and Beta-HCG levels) to differentiate ectopic pregnancy from spontaneous abortion.
- 3. Create useful differential diagnoses based on sonographic findings of oligohydramnios and polyhydramnios.
- 4. Differentiate placenta previa from placental abruption on sonographic imaging.
- 5. Characterize the imaging appearance of uterine leiomyomas on a variety of imaging modalities.
- 6. Formulate imaging differential diagnoses for adnexal masses of varying complexity (ranging from purely cystic to purely solid).


Ultrasonography

TERMINOLOGY

- 'Echoic': root word
 - -Prefixes describe the underlying echogenicity
 - 'an', 'hypo', 'iso' (better yet, intermediate), and 'hyper.
- Echogenicities may vary:
 - -Within a given organ
 - -Among different organs
- A normal pattern of echogenicity exists within normal organs
- Note: Comparison of adjacent relative echogenicities may be made


<u>Anechoic</u>

- -Absence of reflected sound waves
- -Commonly seen with fluid-filled structures
- -'Black' appearance
 - -Urinary bladder (arrow at right)
 - -Simple cyst (see below)
 - -[Note: Endometrium is hyperechoic!]

Note: A simple cyst is a well-characterized benign entity (arrow at right)

- -Anechoic
- -Thin, imperceptible wall
- -Posterior acoustic enhancement
- -Lack of vascularity

Hypoechoic

- -Diminished degree of reflected sound waves
- -'Dark' appearance (but not completely devoid of echoes)
 - -Debris within complicated cyst (arrow at right)
- -Note: The term hypoechoic can also be used to compare two different structures

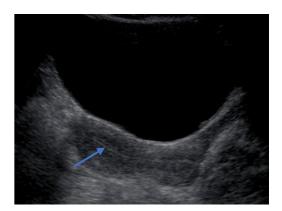
Isoechoic

- -Medium degree of reflected sound waves
- -Intermediate ('gray') appearance
- -Often representative of normal solid organs
 - -Spleen (arrow at right)
- -Note: The term isoechoic can also be used to compare two different structures which appear similar sonographically

Hyperechoic

- -High degree of reflected sound waves
- -Bright ('white') appearance
 - -Central echogenic complex in renal sinus (arrow at right)
 - -Endometrial stripe is hyperechoic (see blue arrow below)

-Note: The term hyperechoic can also be used to compare two different structures

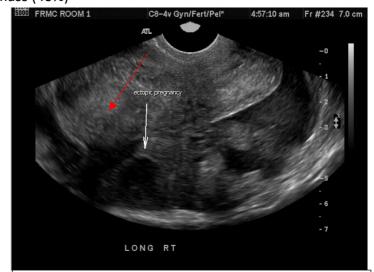

FR 33Hz SS Z1.1 RT KIDNEY

ADVANTAGES OF ULTRASONOGRAPHY

- -No ionizing radiation
- -Infinite imaging planes
- -Dynamic imaging (i.e. vascular assessment; fetal assessment)

DISADVANTAGES OF ULTRASONOGRAPHY

- -User-dependent
- -Limited assessment of osseous structures
- -Bowel gas often obscures detail

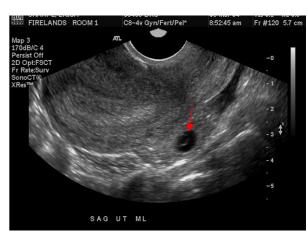

-Sonography in ectopic pregnancy

- -Pregnancy outside the confines of the uterus
 - -Clinical presentation: Pain (95%). Vaginal bleeding (85%). Adnexal mass (40%)
- -Incidence: 0.5%-1.0%
- -Location:
 - -Tubal: 97% Most commonly at ampulla (then isthmus)
 - -Interstitial/cornua: 2%
 - -Ovarian: 1%
 - -Cervical: very rare

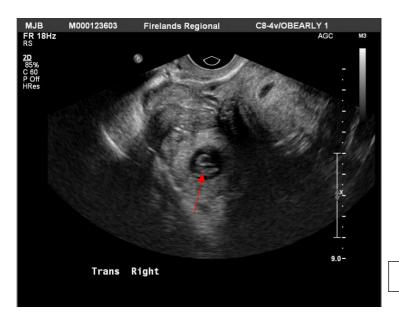
Note: Adnexa: Ovaries and fallopian tubes (as well as supporting

ligaments) Risk factors

- -Prior ectopic pregnancy
- -IUD (intra-uterine device)
- -H/O PID (pelvic inflammatory disease)
- -Tubal surgery
- -IVF (in vitro fertilization)


Complex adnexa mass (white arrow) representing ectopic pregnancy. Empty uterus (red arrow)

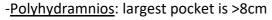
-'1-7-11' rule (utilizing transvaginal sonography, TV): Based on B-HCG levels (in mIU/ml)


- -At 1,000 mIU/ml, a gestational sac must be visualized within the uterus
- -At 7,000 mIU/ml, a yolk sac *must* be visualized within the aforementioned gestational sac
- -At 11,000 mIU/ml, a fetal pole *must* be visualized within the gestational sac

Sonographic features of ectopic pregnancy

- -'Suggestive'
 - -No IUP (intrauterine pregnancy)
 - -Pseudogestational sac (intrauterine fluid, without decidual reaction)
 - -Cul-de-sac fluid/blood
 - -Cystic adnexal mass (10% chance of ectopic)
- -'More definitive'
 - -Complex adnexal mass (95% chance of ectopic)
 - -Adnexal ring sign (echogenic ring in adnexa,
 - surrounding an unruptured ectopic pregnancy, 95% chance of ectopic)
 - -Live extrauterine pregnancy, 100%

Gestational sac and yolk sac (red arrow) outside the confines of the empty uterus


Fetal pole (red arrow) in the right adnexa

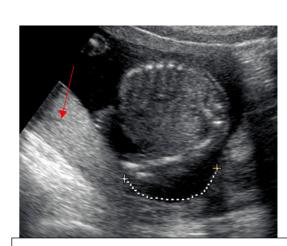
Note: Serial B-HCG levels (and serial TV sonography) assist in differentiating ectopic pregnancy from spontaneous abortion

- -In early normal (orthotopic) pregnancy, B-HCG levels double every 2-3 days.
- -In ectopic pregnancy, B-HCG levels rise at a slower rate than in an orthotopic pregnancy (i.e. slower doubling time)
- -B-HCG levels fall in spontaneous abortion!

-Amniotic fluid volume

- -Single pocket measurement
 - -Oligohydramnios: largest pocket is <2cm
 - -D/D (oligohydramnios):
 - -Fetal demise
 - -Fetal renal abnormalities
 - -IUGR (intra-uterine growth retardation)
 - -PROM (premature rupture of membranes)
 - -Post-dates
 - -Chromosomal abnormalities

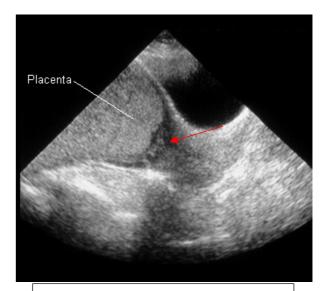
- -D/D (polyhydramnios)
 - -Idiopathic, 40%
 - -Maternal, 40%
 - -Maternal DM
 - -Maternal HTN
 - -Fetal, 20%
 - -CNS lesions (neural tube defect)
 - -Proximal GI obstruction
 - -Chest mass
 - -Twin-twin transfusion


Oligohydramnios

Polyhydramnios

-- Placenta previa on sonography

- -Placenta abnormally covering the internal cervical os
- -Risk factors:
 - -Increasing maternal age
 - -Multiparity
 - -Prior C-section
- -Complications:
 - -3rd trimester bleeding
 - -Premature labor
 - -Perinatal/maternal death


Normal posterior placenta (red arrow), distant from cervix (as shown my dotted line)

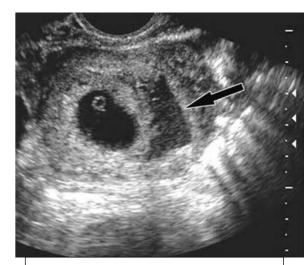
-Subtypes of placenta previa

- -'low-lying': placental edge within 1 cm of internal cervical os
- -'marginal': placenta extends to internal cervical os
- -'partial': placenta partially covers the internal cervical os
- -'complete': placental completely covers the internal cervical os

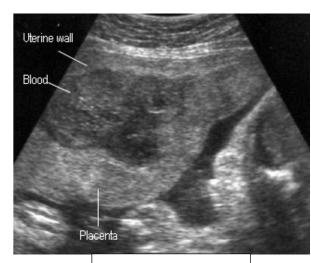
Marginal placenta (PL) previa with respect to internal cervical os (CX)

Complete placenta previa with respect to internal cervical os (red arrow)

-Placental separation on sonography


-Separation of the placenta from underlying myometrium secondary to hemorrhage -Spectrum

-Subchorionic hemorrhage (often 1st trimester)


-Overall good outcome (venous source)

-Placental abruption (often in 3rd trimester)

- -Complications (arterial source)
 - -Pain
 - -Bleeding
 - -Fetal/maternal death is possible
 - -Intrauterine growth retardation (IUGR) in chronic cases
- -Incidence: 1:100 pregnancies
- -Risk factors
 - -Multiparity
 - -Increasing maternal age
 - -Pre-eclampsia/eclampsia
 - -Trauma
 - -Smoking
 - -Cocaine use

Subchorionic hemorrhage (black arrow)

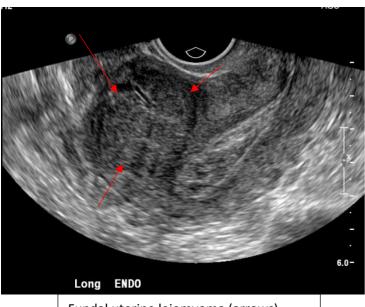
Placental abruption

.....

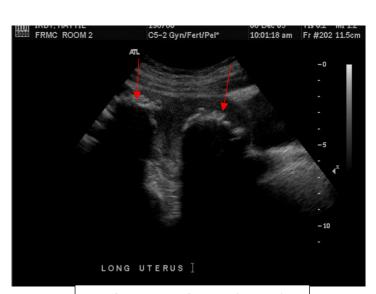
Uterine leiomyoma ('fibroid')

- -In 30-40% of women of reproductive age
- -Growth influenced by levels of estrogen production
- -Complications:
 - -Pelvic pain due to torsion, infarction or necrosis
 - -Infertility and pregnancy complications
 - -Heavy prolonged periods

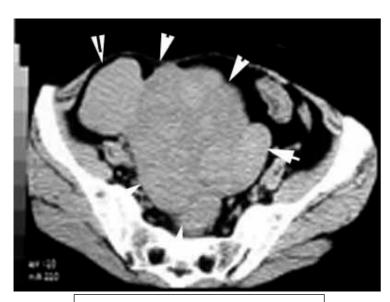
-Radiographs


-May reveals fibroids is they are calcified

-Sonography


- -solid masses (various echogenicities)
- -calcifications may be present
 - -echogenic foci
 - -posterior acoustic shadowing
- -necrosis/degeneration
 - -cystic (anechoic to hypoechoic foci)

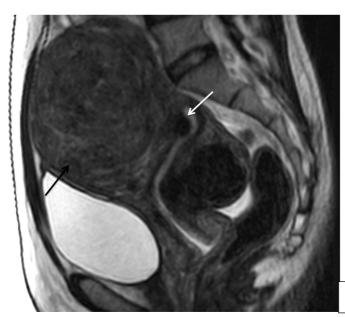
Calcified uterine leiomyomata (arrows)


Fundal uterine leiomyoma (arrows)

Calcified uterine fibroids (arrows) with posterior acoustic shadowing

Computerized axial tomography (CT)

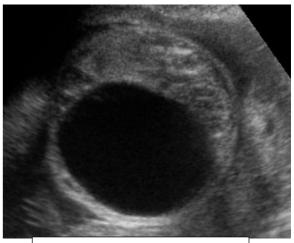
- -soft tissue density
- -potential calcifications and/or cystic changes
- -variable enhancement


Uterine fibroids (arrowheads/arrows) (lumen.luc.edu)

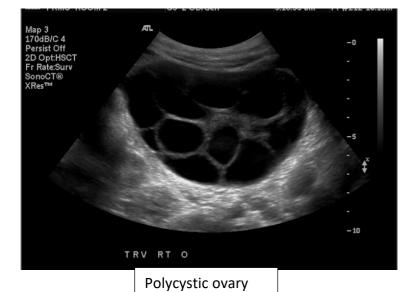
Calcified uterine leiomyoma (arrow) (ctisus.com)

Magnetic resonance imaging (MRI)

- -Hypointense on T1 and T2 (if non-degenerated)
- -Cystic degeneration (T2 hyperintensity)
- -Variable signal in other types of degeneration (i.e. hyaline, red, myxoid)



Fundal fibroid (arrows) on MRI

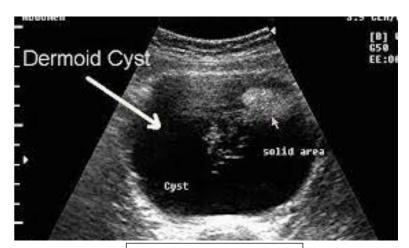

-Adnexal masses

-D/D of completely cystic adnexal mass

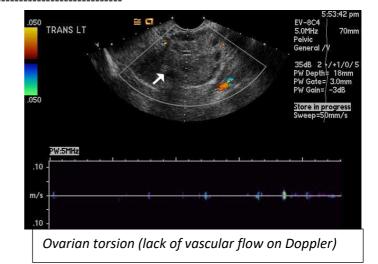
- -physiologic ovarian cyst (>3cm)
- -benign cystic neoplasm (cystadenoma)
- -hydrosalphinx
- -para-ovarian cyst

Simple ovarian cyst (4.5cm)

Hydrosalphinx (arrows)


-D/D of complex (primarily cystic) adnexal mass

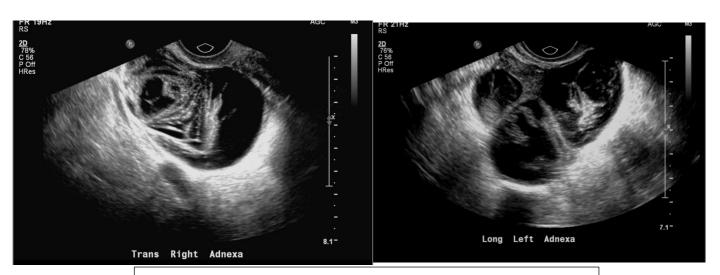
- -Hemorrhagic ovarian cyst (see image to the right)
- -Endometrioma
- -Cystadenoma/cystadenocarcinoma
- -Dermoid/Teratoma
- -Tubo-ovarian abscess
- -Ectopic pregnancy


Hemorrhagic ovarian cyst vs endometrioma

Teratoma (dermoid cyst)

-D/D of complex (primarily solid) adnexal mass

- -Dermoid/Teratoma
- -Ectopic pregnancy
- -Ovarian torsion
- -Ovarian malignancy



-D/D of solid adnexal mass

- -Primary ovarian neoplasia
- -Metastatic disease to the ovary (Krunkenberg tumor)
- -Pedunculated uterine fibroid

Primary ovarian mass (in 80-year-old female)

Krunkenberg tumors (colon neoplasia metastatic to bilateral ovaries

References:

- -Clinical Radiology: The Essentials. Daffner et al. 4th ed. (Chapter 6).
- -Primer of Diagnostic Imaging. Weissleder et al. 4th ed. (Chapters 4 and 9).
- -Genitourinary Radiology: The Requisites. Zagoria et al.
- -Note: Medical images are from anonymized patient data and online archives (as detailed)

OPTIONAL: Want to know more?

https://www.med-ed.virginia.edu/courses/rad/

www.auntminnie.com

www.acr.org

www.rsna.com