Genitourinary Imaging Overview

Marcus John Julius, M.D.

GU Imaging Overview

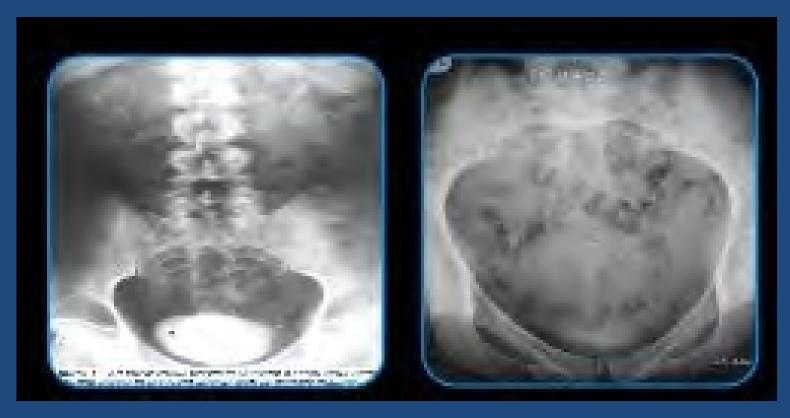
Objectives

- Present the imaging modalities available for assessment of the genitourinary system
- Analyze the benefits and limitations of each imaging modality
- Recognize normal anatomy on multiple imaging examinations

KUB

- KUB: AP view of the abdomen and pelvis (from above the level of the diaphragm through the level of the symphysis pubis)
 - 'Kidneys-ureters-bladder'
 - 'Flat-plate' of the abdomen
 - Initial assessment of:
 - Bowel gas pattern
 - Solid organ size
 - Calcifications
 - Osseous structures

KUB

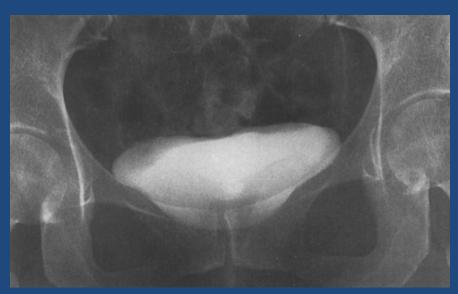

KUB

- Advantages
 - Readily available
 - Relatively inexpensive
- Disadvantages
 - Ionizing radiation (although a small, permissible amount)
 - Limited soft tissue detail
 - Often necessitates additional (advanced) imaging

- Dynamic, serial imaging of the urinary tract after intravenous contrast administration
 - Unenhanced 'scout' KUB
 - 'Early' post-IV contrast image ('nephrogram phase')
 - 5 minutes after IV contrast administration
 - 'Late' post-IV contrast image ('pyelogram phase')
 - 10 minutes after IV contrast administration
 - 'Delayed' post-IV contrast image ('pre-void' urinary bladder)
 - 20-30 minutes after IV contrast administration
 - Post-void image

Scout film 'Nephrogram' 'Pyelogram'

'Pre-void' 'Post-void'

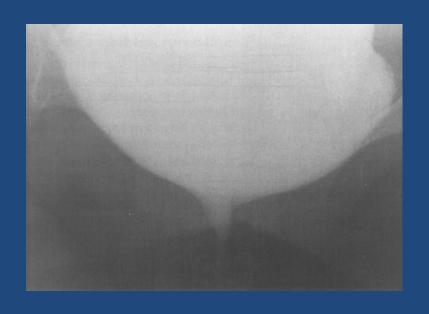

Advantages

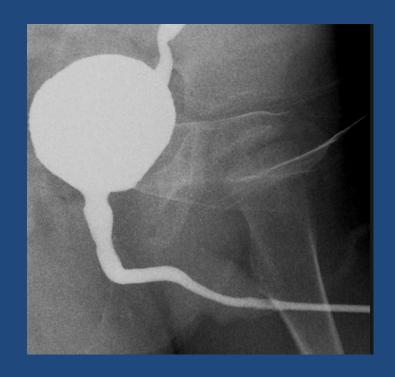
- Historically' useful in the initial workup of hematuria and/or obstructive uropathy
- Functional overview of the urinary tract
- Disadvantages
 - Ionizing radiation
 - Contrast burden
 - Limited characterization of mass lesions

Cystography

- Cystography: contrast examination of the urinary bladder
 - Utilizes a catheter to instill contrast media into the urinary bladder in retrograde fashion
 - Imaging of the urinary bladder is performed during filling/after voiding (with imaging also possible during the act of urination/voiding, if indicated clinically)
 - Useful for assessment of hematuria, neoplastic surveillance, postoperative assessment, infection, trauma
 - Voiding cystourethrogram (VCUG): dynamic imaging of urinary bladder during passive filling/active voiding
 - Commonly used in pediatric population to assess for vesicoureteral reflux

Cystography

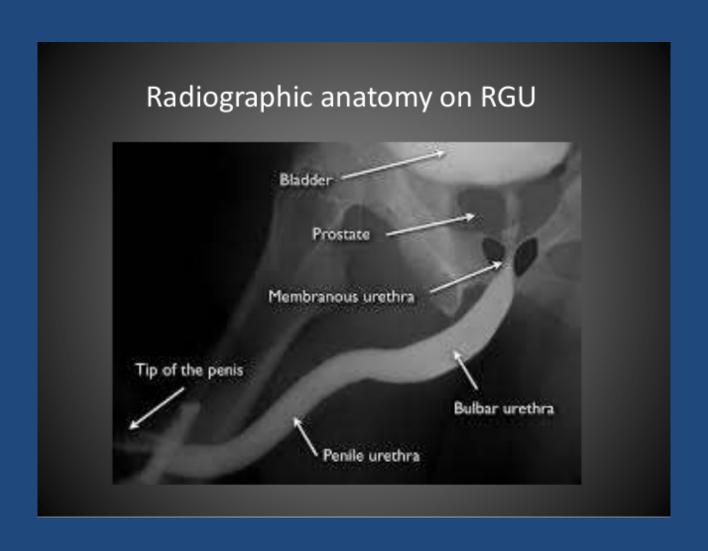




Pre-void image

Post-void image

Voiding cystourethrography (VCUG)

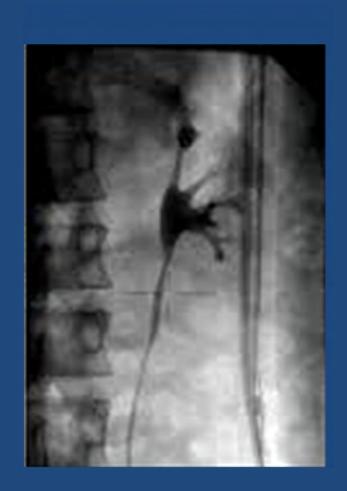

Normal female urethra

Normal male urethra (Note: Left-sided vesicoureteral reflux)

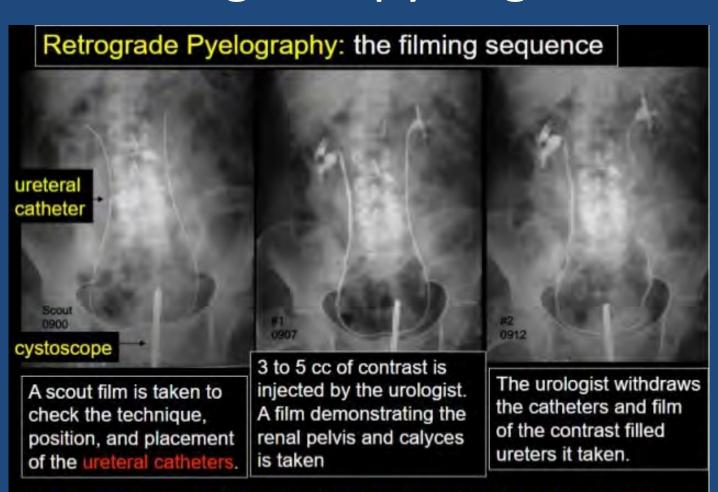
Retrograde urethrogram

- Performed by urologist and/or interventional radiologist
- Retrograde instillation of iodinated contrast into the distal urethra (i.e. in males, after localization of catheter at the level of the fossa navicularis)
 - Allows for assessment of urethral integrity (i.e. in acute trauma patients with blood at urethral meatus)
 - Allows for assessment of urethral caliber and contour in patients with history of infection, long-standing catheterization, prior instrumentation, and remote trauma

Normal retrograde urethrogram



Retrograde pyelogram


- Performed intraoperatively by urologist
 - Cystoscopy allows visualization of ureteral orifices
 - Contrast media is instilled into ureters in retrograde fashion
 - Permits optimal ureteral distension and opacification
 - Augments the workup of hematuria (particularly in the presence of 'negative' IVP, CT, MR examinations)
 - Ureteroscopy is a possible adjunct to cystoscopy, allowing for direct visualization of the ureters and intrarenal collecting systems

Retrograde pyelogram

Retrograde pyelogram

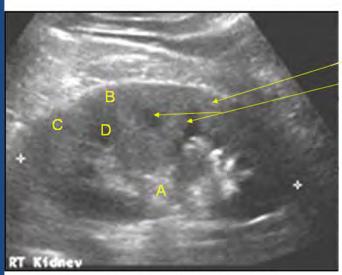
These three films are a typical routine, though more may be taken at the urologist's discretion. All films must be marked by the technologist: order and time.

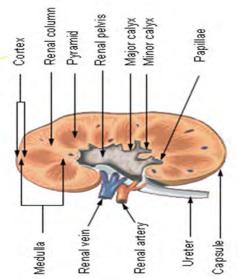
Cystography, retrograde urethrogram, and retrograde pyelography

Advantages

- Allow for optimal opacification and distension of various levels of the urinary tract
- In VCUG, allows for a dynamic assessment of voiding

Disadvantages

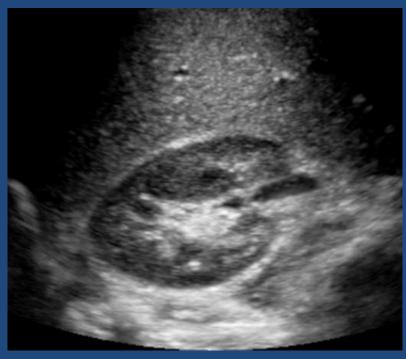

- Ionizing radiation
- Contrast media exposure


Renal sonography

- Renal sonography allows for non-invasive assessment of the retroperitoneum
- Potential uses
 - Initial assessment of renal failure
 - Medical vs surgical etiology
 - Characterization of renal masses
 - 'Cystic' vs 'solid'
 - Doppler assessment of renal arterial vasculature in screening for renovascular hypertension
 - Potential guidance for renal biopsy

Renal sonography

Normal Kidney on Ultrasound


Terms used in Ultrasound

Hyperechoic A compared to B Isoechoic B compared to C Hypoechoic D compared to C

Renal sonogram

Sagittal image

Transverse image

Renal sonography

- Advantages
 - Readily available (including portable imaging)
 - No ionizing radiation
 - No contrast burden
- Disadvantages
 - Image quality based on patient's body habitus and sonographer's skills

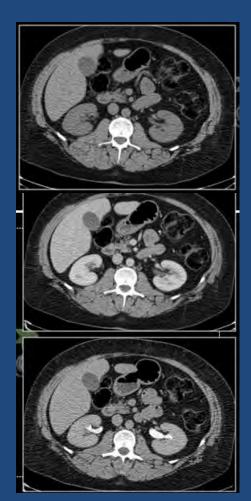
Computerized axial tomography (CT)


- Cross-sectional imaging (CT and/or MR) of the abdomen and pelvis
 - For assessment of painful hematuria, unenhanced abdominal/pelvic CT is utilized
 - Otherwise, abdominal/pelvic CT is ideally performed prior to and after the administration of IV contrast enhancement

Computerized axial tomography (CT)

- CTU: CT-urography
 - Specialized type of CT imaging protocol, utilizing tri-phasic imaging of the abdomen and pelvis (after PO ingestion of water)
 - Unenhanced phase
 - Assess for urinary tract calculi
 - Early enhanced phase (90-180 sec after IV contrast): Nephrogram phase
 - Assess for renal parenchymal enhancement pattern (including characterization of renal masses)
 - Delayed phase (8-10 min after IV contrast): Excretory phase
 - Assess renal collecting system (intra-renal collecting system, ureters, and urinary bladder)

CT-urogram (CTU)

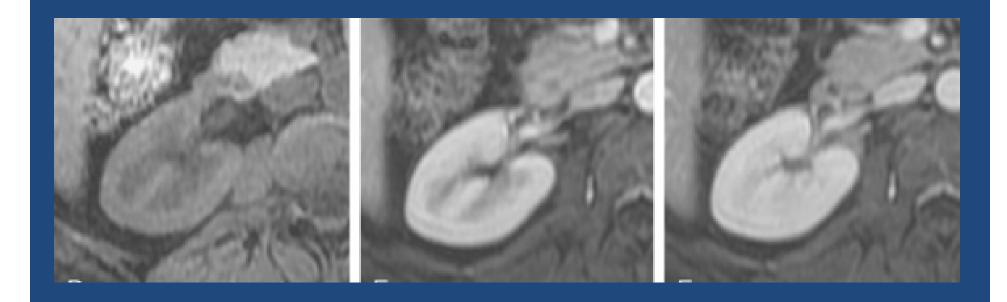


Source data

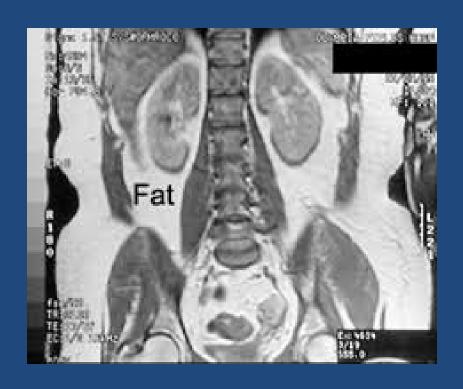
CT-urogram (CTU)

Computerized axial tomography (CT)

Advantages


- Detailed assessment/characterization of renal and urothelial masses
- Allows for assessment of adjacent retroperitoneal structures (i.e. lymph nodes, vasculature), intraperitoneal structures, and osseous structures
- Excellent soft tissue detail

Disadvantages


- Ionizing radiation
- Contrast media burden (with exception of 'renal colic workup')
- Cost

- Multi-planar, multi-sequence imaging of the abdomen and pelvis allows for optimal soft tissue assessment
 - Ideally performed prior to and after IV gadolinium (Gd) administration
 - In patients with renal dysfunction, Gd is not administered
 - Useful in those patients who cannot undergo enhanced CT imaging (secondary to severe contrast reaction)
- MR imaging allows for characterization of renal masses and urothelial lesions

- In addition, assessment of adjacent retroperitoneal structures (such as lymph nodes and vasculature) is feasible
- MR imaging also allows for global assessment of remaining abdomen and pelvis (i.e. intraperitoneal structures and osseous structures)
- MRU: akin to CTU

Unenhanced (left image) and enhanced (middle/right images) T1-weighted axial images of the normal right kidney

T1-weighted coronal image

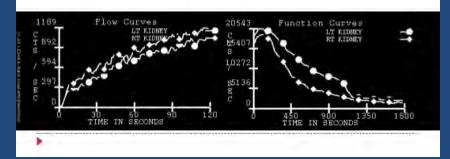
Enhanced MRA

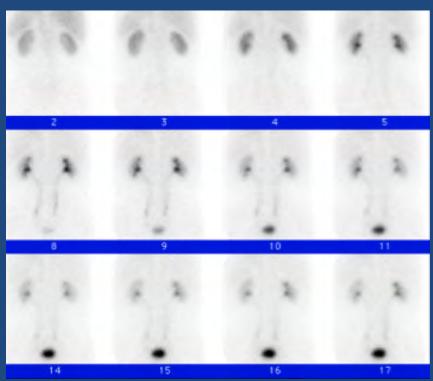
Advantages

- No ionizing radiation
- Useful in patients with severe iodine allergy
- Excellent soft tissue detail

Disadvantages

- Cost
- Cannot be performed in all patients (i.e. those with unapproved pacemakers, aneurysm clips, etc.)


Nuclear medicine


- Renovascular flow and renogram
 - Assess vascular flow to kidneys
 - Assess uptake, excretion, and drainage of radiopharmaceutical by the kidneys
 - Differential renal function can be calculated
- Lasix administration allows for differentiation of hydronephrosis from patulous collecting system
- Captopril administration allows for performance of a screening examination for renovascular hypertension

Nuclear medicine

Look at some normal curves.

 Normally, the curves show rapid uptake (flow curve on left) and rapid drainage (function curve on right).
Each kidney is plotted separately

Normal renovascular flow/renogram

Normal source images

Nuclear medicine

Advantages

- Functional and structural assessment of the GU system
- Additional use of Lasix and Captopril assists in problem-solving
- Disadvantages
 - Ionizing radiation
 - Somewhat limited spatial detail

Summary

- Please correlate this lecture with your additional genitourinary-based medicine, pathology, and pharmacology lectures
- Plan to utilize this 'Genitourinary Imaging Overview' lecture in correlation with your 'Genitourinary Imaging PI session' preparatory reading (for optimal performance during your genitourinary PI session).